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Electron Mobility in Gases at Low Temperatures: 
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The zero-field mobility of electrons in dilute gases at low temperatures is 
studied. We consider the case where the de Broglie wavelength of the electron is 
large enough that the mobility calculation must be formulated using quantum 
mechanical kinetic theory. The electron mobility is then computed as a function 
of the gas density with the approximation that the gas is considered as a 
collection of fixed scatterers. We evaluate the first two terms in the density 
expansion of the mobility, and compare these results with experiments. 
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1 I N T R O D U C T I O N  

In  two papers ,  of which  this is the first, we examine  the t r anspor t  p roper t ies  
of e lectrons in gases at  low tempera tu res  where  q u a n t u m  mechan ica l  effects 
are  impor tan t .  In  this p a p e r  we ca lcula te  the first two terms in the dens i ty  
expans ion  of the zero-f ield e lect ron mobi l i ty ,  /z. In  the next  paper ,  we 
discuss the q u a n t u m  analogs  of the classical  divergences  (~) in the dens i ty  
expans ion  of  the e lec t ron mobi l i ty  as well as the long t ime tail  in the 
G r e e n - K u b o  fo rmula  for  #.3 Al l  of the above  ca lcula t ions  are  based  on a 
q u a n t u m  mechan ica l  kinet ic  theory  that  is a na tu ra l  genera l iza t ion  of  
classical  kinet ic  theory.  4 

Work performed under NSF Grant CHE 77-16308. 
I Institute for Physical Science and Technology, University of Maryland, College Park, 

Maryland 20742. 
2 Institute for Physical Science and Technology and Department of Physics and Astronomy, 

University of Maryland, College Park, Maryland 20742. 
3 See, for example, Ref. 2 
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The theoretical and experimental interest in/~ at low temperatures is 
due to several interesting features of its dependence on density. At the very 
lowest densities studied,/~ has a value that is consistent with the prediction 
of the quantum mechanical Lorentz-Boltzmann equation. As the density is 
increased the mobility decreases and eventually a region of density is 
reached where the mobility drops several orders of magnitude over a small 
density range. (4) This large drop in mobility is usually attributed to electron 
localization. The calculations presented here are restricted to densities 
smaller than the localization density, and they describe the initial drop in 
the mobility from its low density value. 

To simplify the calculations, we consider the following model of the 
electron-gas system: 

(1) Since the mass of the electron, m, is much smaller than the mass 
of the gas atoms, rng, we can treat the gas particles as though they were 
fixed scatterers. For a typical gas, e.g., Helium, m/mg, ,~  10 -3, which 
implies this should not be a serious restriction on the theory because the 
corrections are of order 10-3. 

(2) We explicitly treat the case where the interactions between the 
electron and the gas atoms, as well as the interactions between the gas 
particles themselves, are hard sphere interactions. Again, we do not believe 
the use of the hard sphere interaction model for the electron-atom scatter- 
ing is a serious restriction on the theory for low temperatures, where our 
results will be applied, since under these circumstances we can use expan- 
sions in powers of the electron-atom scattering length to compute the 
properties of interest. (5) That is, the results of physical interest can be 
expressed in terms of the scattering length, which, in turn, is insensitive to 
the specific interparticle potential used, as long as the ratio of the scattering 
length a, to the thermal de Broglie wavelength of the electrons, X, is small, 
and the scattering length is positive. Here the thermal wavelength of the 
electron is given by X = h(2~rfl/m) 1/2, where h is equal to Planck's constant 
divided by 2~r, fl = (ks  T )  -1, k 8 is Boltzmann's constant, and T is the 
temperature. For a typical system (helium) the scattering length for the 
helium-electron interaction is (4) a = 0.63 • 10 -8 cm and at T =  4~ 
X~3 • 10 -6 cm, a / X ~ 2  • 10 -3. Further, although we set up the calcula- 
tion to include effects due to the interactions of the gas particles among 
themselves, these corrections will eventually be neglected since they are of 
order no 3 ~ na 3 ,~ 10 -3, which is small compared to the effects calculated 
in this paper. Here o is the hard core diameter of the gas particles and n is 
the gas density. 

With the above simplifications the problem is reduced to that of 
calculating the electron mobility in a quantum mechanical Lorentz gas in 
which an electron moves in the presence of N fixed scatterers. 
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An important feature of the calculations given here is that we must 
keep track of the various expansion parameters that can appear in the 
theory. In classical mechanics the 0nly expansion parameter involving the 
density of scatterers, n, that can appear in the calculation of #, at zero field, 
is na 3 because a and n - l/3 are the only lengths in the problem. In quantum 
mechanics, however, there is a new length, ~, so that the possible dimen- 
sionless expansion parameters involving the lengths n -1/3, a, and )t are 
nX 3, a /X ,  nX2a, na2X and na 3. The first parameter, nX 3, does not appear in 
our analysis since it is a parameter associated with the effects of quantum 
statistics that are absent in our model of one electron moving in the 
presence of N stationary scatterers. The second parameter, a / h ,  will 
appear, and, as already mentioned, be taken to be much less than unity. 
Now, since a/X<< 1 the remaining dimensionless parameters satisfy the 
inequality 5 n)tZa >> na2h >> na 3. In the course of our calculations we will 
show that for low temperatures the parameter nTt2a does not appear in the 
calculation of the density expansion of /~ so that the most important 
expansion parameter is na2h. It should be remarked that the appearance of 
the parameter na2X can be understood from the fact that it is simply the 
ratio of the de Broglie wavelength of the electron to its mean free path in 
the system of scatterers, X/ l ,  where l ~  (na2) - 1 is the mean free path of the 
electron. That is, the first density correction to the dilute gas result for 
becomes important when the thermal wavelength is comparable to the 
mean free path of the moving particle. We also note that in typical 
experiments na2)t ~ 10-1, and that n)t2a ~ 50. 

The Green-Kubo  formula for the mobility of an electron moving in 
the presence of fixed scatterers is 6 

( d R  N A ^ ~ ] A -a-i e lira lim ( ~ d t e  -~t Tr[z ,  Peq(X,R N) pz( t )  
n m e->0 u---)~ J0 . j  ~U+l k 

N/a = n 

(1.1) 

where ~ = ~,~ are the quantum mechanical operators for the electron's 
position and momentum, e is the electron charge, the R N =  (RI, R2, 
. . . , R N )  are the positions of the N fixed scatterers in a volume ~, [ , ] 

denotes commutator, Tr indicates a trace over a complete set of states for 
^ - " ,  ~N- the electron, peqtX, K ) is the statistical density operator in the canonical 

ensemble (cf. Section 2), and pz(t) is the z component of the momentum 
operator of the electron at time t. Throughout this paper we use a caret to 
denote a quantum mechanical operator. 

5 In typical experiments (4) a / ~ 2  • 10 -3, n)t2a~50, na2)t~0.1-1 and na3~10 -3. 
6 See, for example, Ref. 6. 
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The purpose of this paper is to evaluate Eq. (1.1) for a system where 
the reduced density of scatterers, na2?~ ~ ~,/1, is small. We will show that 
the first two terms in a density expansion of/t  are (when a/7~ << 1) 

fie (1 - 7r2na2k + O[(na2~)2,na3]) 
iz = 3(2~rflm)l/2mra2 

= ~B[I - ~r2na2?~] (1.2) 

with /~ the mobility given by the quantum mechanical Boltzmann equa- 
tion. 

The outline of this paper is as follows. In Section 2 we give the basic 
formulas needed for the calculation of /~ as well as a formal density 
expansion of /~ in terms of dynamical time displacement operators and 
reduced density operators. This is accomplished by generalizing a proce- 
dure due to Zwanzig (7) for obtaining virial expansions of transport coeffi- 
cients for classical systems to quantum systems. As a result, we obtain a 
kinetic equation for the Laplace transform of a time correlation function 
which, when solved, gives/~ as a density expansion in terms of dynamical 
operators and reduced density matrices. In Section 3 the reduced density 
matrices are computed by using the equilibrium binary collision expansion 
(BCE) of Lee and Yang. (8) In Section 4 we use the results of Sections 2 and 
3 to derive the first term in the density expansion of /~, the Boltzmann 
contribution, /~8, in Eq. (1.2), and in Section 5 we use a nonequilibrium 
binary collision expansion (7) to compute the first density correction to/~8 
[cf. Eq. (1.2)]. We then compare Eq. (1.2) with existing experimental data 
for #. In Section 6 we discuss the relationship between our results and that 
of previous workers in the field and make some concluding remarks. 

2, BASIC FORMULAS AND CLUSTER EXPANSION OF THE 
ELECTRON MOBILITY 

We begin by considering the equilibrium density operator in Eq. (l.1) 
given by 

. . exp[ - fl/l(x, RN) ] 
Ooq(X, R N) = z~+ 1(~, ~) (2.1) 

where ZN+ l is the canonical partition function for a system consisting of N 
fixed scatterers and a moving electron of mass m, 

dR u , . ZN+,(fl, a ) =  f ---~-~+ 1Tr exp [ - fill(x, RN) ] (2.2) 
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^ A A N where H( i ,  R N) is the Hamiltonian operator. H(x, R ) can be conveniently 
written 

with 

/~(~, R N ) ^ N = ~ (x ,  R ) + / t s t ( R  ~ )  (2.3) 

N 
A A A A A 

Hd(x, R N) = H0(l$ ) + ~ Va(r - Ri) (2.4a) 
i=1 

A A - -  

Hp(p) /~2 (2.4b) 
2m 

N 
Hst(R N) = 1 2 Vst(Ri- Rj) (2.4c) 

i~ j  
A A 

where Vu(r - Ri) is the dynamical interaction potential between the moving 
electron and the ith scatterer. In the coordinate representation: 

V a ( r -  R 3 = c~ for I r - R i [  ~< a 
(2.5) 

v ~ ( r  - R 3 = 0 for  Ir - R~I > a 

Similarly, Vst(R i - R j )  is the interaction potential between two stationary 
scatterers i and j:  

Vst(Ri - Rj) = oo for JR/ -  Rjl < o 
(2.6) 

Vst(R, - Rj) = 0 for  IR, - Rjl > o 

with o the diameter of the scatterers�9 Also, in Eq. (1.1),fiz(t) is given by 
A A 

fiz(t) = exp i ~ - ( x , R  )t  pzeXp - i  (~,RN)t 

A A 

I 1 = exp i - ~ ( x , R  )t pzexp --z~--(:~,RN)t 

----- exp [ iE(~, R n) t ] /~ (2.7) 

where we have used the fact that Hst(R N) commutes with/~z and the last 
equality in Eq. (2.7) defines the Liouville operator, e(~,R N) = (1/h)[/4d(~, 
RN), ] for an electron moving through an array of N fixed scatterers. It 
should be remarked that exp[ie(~,RN)t] is a superoperator that acts on 
operators and not state functions. 

In order to facilitate the evaluation of Eq. (1.1) for ~ as a power series 
in the density of scatterers we make an operator cluster expansion of the 

�9 P" N quantum mechanical time displacement operator exp[lt~(x, R )]. For this 
�9 A N simple system the Ursell cluster expansion of the operator exp[ltg(x, R )] is 
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given by 
N N 

%(x, Ri, t) + 1 y, %(x, R Rj, 0 exp[ itE(fc,RU) ] = exp[ itE(O) ] + ~] * " " " 
i = 1  " i ~ j  

+ - . .  + ~ R, . . . . .  R u , t) (2.8) 

where E(I)) - (1/h)[H0~), ] and the Ursell operators, ~ t , can be obtained 
from Eq. (2.8) by considering the cases N = 1, 2 . . . . .  successively. This 
leads to the following results for the operators ~ ~2 . . . .  : 

~,(:~, R,, t) = exp[ it~(:~, R1) ] - exp[ its (2.9a) 

~ RIR2, t ) = exp[ it~(R, R,R2) ] - exp[ it~(P,,R,) ] 

- exp[ itE(~, R2) ] + exp[ itE(O) ] (2.9b) 

After inserting Eqs. (2.9) into Eq. (1.1) one can show that the electron 
mobility is given by 

A A i e lim lira Tr [3, g(fi)]qb(p,r (2.10) 
N/a = n 

A A 
where ~(p, c) is defined by 

N n l f l ~ 3 ,  ^ + ~ ~ dR [z ,~( l~) ] - '  [ ~(~,R')]~t(R,RZ, E)p~ (2.11) 
l = l  " 

Here ~0(!)) = [~ - iE(I$)]~ 1 is the free particle propagator, ~z (2, R l, ~) is the 
Laplace transform of ~z(:LR l, t), and the ~(~,R z) are reduced density 
operators defined by 

g(O) 
a 

ng(~,R,)  

_ _  _ f d R  u e x p [ -  fl/-I(:~,RU)] 
~ - ; i  ]g-~+ 1( ~--, ~ (2.12a) 

- Nf d R U - I  exp[--f l /4(x 'RN)]  

2 ^ -  dR ~v-2 exp[ -fl/~Q2'RN) ] 
ng (x ,R l ,  R2)= N ( N -  1 ) f  aN+l Z-~+I--~,~) ) (2.12c) 

(2.12b) 

The factors of f~ in Eqs. (2.12) have been included so that the reduced 
density operators remain finite in the thermodynamic limit ( N ~ ,  
f~-~ ~ ,  N / f ]  ~ n; cf. Section 3). In giving Eq. (2.11) we have also formally 
defined the inverse of [3, g(l~)] to be [3, g(.P)]-1. In Section 3 we will show 
how these reduced density operators, and [3, g(l~)]- 1, can be computed as a 
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power series in the density. We note that because the reduced density 
operators themselves have a density expansion, Eqs. (2.10) and (2.11) do 
not yet constitute a density expansion for/~. 

To proceed further, we first point out that each of the terms in the 
expansion o f / t  given by Eqs. (2.10) and (2.1l) does not exist in the limit 

A A - - 1  A �9 A c ~ 0. To see this we need only note that ~0(O)/~z = e Pz, slncep~ commutes 
with E(/3), so that the first term in Eq. (2.11) diverges as e-->0. Further, 
using the nonequilibrium binary collision expansion of the ~ l's given in 
Section 5, one can convince oneself that each %z (e) diverges as e-(l+ 0 as 
e--~ 0. 7 These divergence difficulties are also present in the classical version 
of this calculation and they are eliminated here, as in the classical case, by 
rearranging the density expansion of 6(P, e), given by Eq. (2.11), using a 
procedure due to Zwanzig. (7) 

Zwanzig's method is to define a new set of superoperators ~z (:~, Rt, e) 
by writing Eq. (2.1 l) identically as 

~b(p,c) = c -  i~l~ ) -- N ~ dRZ~z(x, W,c) P~ (2.13a) 
l=1 

or 

[ ] , -  aR'4,(,Z,W,,) ,b(O,,)=eL (2.13b) 

A A A 

where we have used that E(lJ)~(l~,e)= 0, since ~(p,E) is diagonal in the 
momentum representation as can be easily shown. By expanding the 
fight-hand side of Eq. (2.13a) in powers of n and equating the coefficients 
to those of the identical powers of n on the right-hand side of Eq. (2.11), we 
obtain 

/ d R l  ~l(X,Rl,  E) 

= far, 0-' (p)[ ^ ~, g(p)]" * - 112, g (x ,R1) ]~ l ( i ,R l ,~ )~o l ( !  ~ ) *  ^ ~ (2.14a) 

/ d R , / d R 2 ~ , ( x , R t ,  R2,c) 

A ^ - - 1  A = faRtfdR2 o' O)Ee, z, g(X, R1R2)]6~2(x, R1R2,,)~ 0 (p) 

- 2 !  dR, d R 2 ~ ( X , R l ,  e)~0(p)~t(x,R2,e ) (2.14b) 

and so on. 
In the following sections we will explicitly show that the above 

procedure allows one to compute the lowest-order contribution to/~, due to 

7 The appearance of these divergencies is reasonable since it is known that the low density/z is 
of O(n - I). From this it follows that an expansion of # in positive powers of n is not valid. 
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A A 

9 l, as well as the first density correction to this value, due to 9 2. Further, 
in the next paper of this series we will show that if one proceeds to the next 

A 
order in n, and considers 93, then one finds logarithmically divergent terms 
of relative order (naE)~)21ogE. 

3. THE REDUCED DENSITY MATRICES IN EQUILIBRIUM 

In the previous section we derived a formally exact operator kinetic 
equation for ~(1),~) where both dynamical operators, ~ l ,  as well as 
commutators of the form [~, ~(~,Rl)] appear, with ~(~,R t) the reduced 
density operators defined by Eqs. (2.12). In this section we show how to 
calculate the ~(~, R t) as a power series in the density. Further, we show that 
if a/~ << 1 then the largest dimensionless density expansion parameter that 
appears in these expansions is na2)~, i.e., the parameter n~2a does not 
appear�9 

As a simplifying approximation we will replace/-)(~, R N) in Eqs. (2.12) 
by /Qd(/~,R N) given by Eq. (2.4a). That is, we neglect the interactions 
between the N scatterers which is equivalent to neglecting excluded volume 
corrections of O(na3). Since the leading density corrections calculated here 
are of O(na2h) this is justified when a/h << 1. Using this approximation we 
will compute the reduced density matrices given by  Eqs. (2.12) by making 
an operator Ursell duster expansion of exp[-  flHa(r~, RN)] and by evaluat- 
ing the cluster functions by means of an equilibrium binary collision 
expansion similar to that given by Lee and Yang. (8) When carrying out this 
procedure, we will find that for low temperatures, the most convenient form 
for the density expansion of the equilibrium distribution functions is 
obtained by using an inversion procedure similar to that used to define the 
~l  in Section 2. In this way we will show that the terms of O(n)~2a) in 
ZN+I(/~,~'~ ) are canceled by those in N - l  ~ A N fdR exp[-flHa(x,R )] [cf. Eq. 
(2.12)1. 

We first calculate the partition function ZN+ l(fl, ~)" Here we use the 
operator cluster expansion of exp[-flI~a(~,RN)] defined in analogy with 
Eq. (2.8) by 

exp [ - fl/-)a (~2, l~U) ] 

N 

=exp[- f lHo(P)  ] A  . + ~,,al(R,R i , f l )  
i = 1  

N 

+ 1 ~ a2(i,Ri, Rj ' t )  + . . .  + UN(R,R1,R2.. " Ru ' t )  (3,1) 
�9 i ~ j  
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Using Eq. (3.1) for N = 1 , 2 , . . . ,  one obtains the explicit form of ~I(~,R 1, 
fl), successively: 

~l(R,II~, fl) = exp[-- B/4d(~,R~)] - exp[ --/?/to(lJ)] (3.2a) 

~2(~,R,,R2, fl) = exp[ ~ flHa(R,R,, R2) ] - exp [ - / t a (~ ,  RI)] 

- e x p [ -  fl/-Ia(R, R2) ] + exp[ -/~/~o(13) ] (3.2b) 

Inserting Eq. (3.1) into Eq. (2.2) we obtain in the thermodynamic limit 

Z( /3 ,n)=  lira Zu+l(fl,~2 ) 
N , ~ - - >  oo  

N/~2---)n 

/ = 1  

To evaluate Z(fl ,  n) it is convenient to represent the operators in Eq. (3.3) 
in terms of their Laplace transforms with respect to ft. That is, we write Eq. 
(3.3) as 

Z( B,n) - a (2,~i) ( A ~ g J d R  u,(x,R',s) 
. ~ - , o o  L s + H o ( p )  t = l  �9 

(3.4) 
A A ^ A ,g with Ul(X , R l, s) the Laplace transform of ut(x, R, B), 

The structure of the density expansion of Z(B,n)  given by Eq. (3.4) 
can be determined by introducing a binary collision expansion of the 
uAx,• ,s  ). The binary collision operator t, that describes the interaction 
between the electron and a scatterer at R~ is defined by (5) 

A A A A A A 

t ( x , a , , , )  = - R,) Is + / ~ ( ~ , R , ) ]  Va(r 1 Is + H0(p) 1 (3.5a) 

The matrix elements of t* in the momentum representation of the moving 
particle are 

(Pl t*(R, Rt,s)lp~ ) -- t~(p, p,, s; a l )  (3.5b) 

with ]p), the free particle momentum eigenstate, 

( r i p )  = 1 (2~zh)3/2 exp(ip- r/h) (3.5e) 

We remark that the t matrix given by Eq. (3,5b) is directly related to the t 
matrix that appears in quantum mechanical scattering theory. (5) Equation 
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(3.4) can now be written as 

Z( fl, n) - 1 1 :v+io~. 
(2~rh) 3 f dp e & 

[ ~ n'fdRzu,(p,R',s)] (3.6) X Go(p) + __ 7-f. 
l=I 

with Go(p) = Is + p2/2m]-l the "equilibrium" free particle propagator. In 
Eq. (3.6) the first few ut's are given in terms of t matrices by 

f d R ,  u,(p, Rl,S ) = - f dR1 Go(p); l(p) G0(p) (3.7a) 

and 

1 2-7. f dRlf dR2u2(p,R,,R2,s) 

= f d R ,  f d R  2 (Go(p)t~(P)Go(p)t~2(p)Go(p) 

A ^ A 

- ao(p)t,(p)ao(p)t2(p)Go(p)t,(p)ao(p) + . .  } (3 .7b)  

where the sign of each term is determined by a factor ( - 1 )  j with j the 
number of t operators and 

f t i(p) = dp' ti(P, p',s; R/)e(p ' ,  p) (3.8) 

where P(p', p) is a permutation operator that changes the index p to p' in 
any function f(p) on which it acts. 

The "naive" density expansion, Eq. (3.6), for Z( fl, n) can only be used 
to compute the partition function for sufficiently high temperatures and 
low densities such that nX2a << 1. To see this, truncate Eq. (3.6) by keeping 
only the term of O(n). If one then uses the identity (proved in Appendix 
A): 

E R1 1 q(p,p',s;Rl) -- exp - i  T -(p - p') t(p,p',s) (3.9) 

where t(p, p', s) is independent of ll l, in Eq. (3.6) one finds 

1 y+ico 
Z( fl, n ) -  1 f dP~ i  s dsefls 

(2rrh) 3 

X [ Go(p) - n(2qrh)3t(p, p,s)G2(p)] (3.10) 

In Appendix A we show that to O(a), t(p, p,s) is given by a/47r2hrn. Here a 
can be either the range of the hard-core potential defined by Eq. (2.5), or 
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the low-energy, s-wave scattering length for a more general potential. Using 
this in Eq. (3.10) we easily obtain 

Z(fl, n) = ~3 [1 - nX2a] + O(a 2) (3.11) 

Further, one can easily convince oneself that in Z(/3, n) all powers of nXZa 
appear. Because we are interested in density and temperature regimes 
where nX2a is not small (see note 5 above) all terms of this order must be 
resummed. 

As mentioned above, this resummation is most easily carried out by 
using the same rearrangement of Eq. (3.6) as was given in Section 2 for Eq. 
(2.11). To this end we define a new set of operators, b~(p, Rt, s), by means of 
the identity 

go(p)+ ~ 7-(. dRiui(p, RZ, s)= s + ~ +  n t dRtb](p, RZ, s) 
/ = 1  l = 1  

(3.12) 
As in Section 2, we expand the right-hand side in the powers of the density 
and by equating powers of n, we can determine the b's. Using Eq. (3.7), we 
find that the first few b's are given in terms of t operators as 

f dR1/~l(P' Rl; s) = fdR l tl(p) (3.13a) 

f d l l l f  dR2b*2(p, RlR2;s) 

= fdR, fdR2[ tl(p)Go(p)t~(p)Go(p)t"l(p) 
A A A A 

- t , ( p )  ao(e)t (p)Co(p)t,(p)ao(p)t (p) + . . .  ] 

(3.13b) 

The insertion of Eq. (3.12) in Eq. (3.6) yields 

1 1 

• s + ~ + n' dRtb~(p,R';s) (3.14) 

We can now determine Z(B,n) where all powers of nX2a are re- 
summed. If we denote the lowest-order approximation, by Zl(fi, n) where 
only bl(p, Rl,S ) is retained and use Eqs. (3.8), (3.9), and (3.13a), we find 
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that 

1 1 ( ' /+i~dseBS 
Z~( fl, n) = (2qrh) 3 f 

[,2 ]-l 
• s + ~m +n(2~rh)3t(p'p's) (3.15) 

In Appendix A [cf. Eq. (A.8)] we show that to O(a 2) t(p, p, s) is given by 

t(p, pl, s ) _ 4~r2hma [1 + ha (2ms)1/2] + O(a 3) (3.16) 

Inserting Eq. (3.16) into Eq. (3.15), keeping the contribution of O(a) only, 
we obtain 

Zl(  fl, n ) - e-t~eo e-nX2a ~---5-- - X------3-- (3.17a) 

where 

h22~r 
E o = na - -  (3.17b) 

m 

In the next part of this section we show that, for low temperatures, one 
cannot consistently retain the term of O(a 2) in Eq. (3.15) without perform- 
ing further infinite resummations. Further, we will show that each approxi- 
mation to Z( f l ,  n) is proportional to e -~E~ and that each term in the 
numerator of Eq. (2.12) is also proportional to e -~e~ so that all terms of 
O(n~2a) in the reduced density matrices eventually cancel. 

Ca] (b~ 

+V+++ 
Cc) 

Fig. 1. (a) The equilibrium two-scatterer ring diagram. (b) The equilibrium two-scatterer 
rattling ring diagram. (c) The equilibrium two-, th ree- , . . . ,  scatterer ring diagrams and their 
sum. The wavy line here represents renormalized propagation. 
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The first density corrections to Eq. (3.15) are obtained by including 
A 

b2(p, Rl,R2,s), given by Eq. (3.13b), in Eq. (3.14). To catalog the various 
terms that appear in the analysis we use diagrammatic technique. The first 
term on the right-hand side of Eq. (3.13b) will be called the two-scatterer 
ring diagram due to its graphical representation given in Fig. la, where the 
number circles represent the scatterers and the straight lines indicate 
propagation between the scatterers by Go(p). The second term in Eq. 
(3.13b) will be called the two-scatterer rattling ring and is illustrated in Fig. 
lb. It will turn out that the two-scatterer rattling rings and the higher-order 
terms in Eq. (3.13b) will not be needed for the analysis presented here for 
the reduced density matrices. 

If we now restrict ourselves to the two-scatterer ring diagrams the next 
approximation for Z( fl, n), denoted by Z2(fl, n), is 

1 1 ' 
Z2( fi, n) - (2~'h) 3 f dP 2---~i ,Tf v*'~dse~S- i ~  

• s + ~ +n(2~h)3t(p,p,s) + 

),] . 1  

X t l(p) Go(p)t2(p) Go(p)t 1 (p (3.18) 

The use of Eqs. (3.8), (3.9), and (3.16) leads to an expression for the 
partition function of the form 

1 1 ~7+iOOdseBS 
z2( B, n) - (2nh)3 lap Y- 

• s + +n(2~rh)3t(p,p,s) + 0 ~ (3.19) 

Equation (3.19) still cannot be used as it stands to compute the first density 
corrections to the value for Z(fl,  n) given by Eq. (3.17a), for low tempera- 
tures. This can be seen from the fact that the low-temperature value of 
Z2(fl, n) is determined by the small s value of the integrand in (3.19), and 
for small s, the term of O(n2/~) dominates the other contributions to 
Z2( B, n). Thus to obtain a useful expression for Z( fl, n) we will have to sum 
the most divergent (as s ~ 0) terms in the integrand on the right-hand side 
of Eq. (3.14). 

For the case of interest here this can be easily done because the l 
( / =  2 , 3 . . .  ) scatterer ring diagrams, illustrated in Fig. lc, are the most 
divergent terms to each order in the density. The resulting resummation is 
illustrated diagrammatically in Fig. lc and to carry it out we only need to 
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sum a geometric series. The resummed partition function, denoted by 
Z R (/3, n), is given by 

1 fdP2_~i~+iOOdseB, Z R (/3, n) - (2~rh) 3 r 

x ~ + ~ + . (2 ,~h)~t(p ,p ,~) -  n dR, t,(p) 

•  1 . 1 ]t~l ) -' 
s + p2/2m + n fdR 2 t2(p) s + p2/2m (P) (3.20) 

Using Eqs. (3.8), (3.9), and (3.16) to lowest order in the scattering length, a, 
we obtain 

ZR( /3, n) = 1 
(2~h)3 f de -~i .,r-ioo~v + '~176 e& 

x ~ + ~ +n(2,~h)~t(p,p,~) 

a (2ms) 1/2 a(2m) l/2 - I  
h 

(s + Eo)~'/21 (3.21) - G  h +E0 h 

with E 0 given by Eq. (3.l/b). Inserting Eq. (3.16) into Eq. (3o21) we see that 
the terms proportional to ~- cancel and that Z R (/3, n) can be written 

e - n X 2 a  �9 " 

ZR( Kn)- (2~rh)3 f "-~7~i fv§176162 

X s + ~m + 2"f~rna2h( 2~rs ]1/21 - '  + 
~rnl 1 

(3.22) 

where we have used the transformation s" = s + E o. Giving s the weight 
1//3 we see that the corrections to Eq. (3.17b) are of O(na2~.) as expected. 

By means of Eqs. (3.22) and (2.12a) and the fact that ~(~) is diagonal 
in the momentum representation, as is easily shown, the reduced density 
matrix g(p) given by (p[ ~(:~)lp)/f~ = g(p)/(2~rh) 3 can be computed to 
O(na2~). To obtain g(p)  we use the same cluster expansion and approxima- 
tions for the exp[-/3H(.~,RN)] in Eq. (2.12a) as was used in calculating 
Z(/3, n). Proceeding along identical lines an expression for g(p) correct to 
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O(na2)t) is 

g(p) = 

�9 + p2 +2~i_~naZh(.~__.__ff_s)ll2 } 
- 1  

- 1  

(2~h)~ ~m 

+ O[ (na2X)2,na 3 ] (3.23) 

To O(na2X) we can expand { } - 1 about the terms proportional to na 2. The 
term of O(na2X) from Z(fi ,  n), the  denominator in Eq. (3.23), vanishes 
identically, as can be shown by carrying out the indicated integrals, so that 
to O(naZX) 

g(p)=X3e-neV 2m - ~X3 ( 2 ) l / 2 f y v + :  (2~ri) 2~rna2h m _ ds e Bs 

+O[(na2)t) 2] 
• [ ,  + / I Z m ]  2 

= go(P) + g~(P) + "'" (3.24) 

We postpone further evaluation of the term in Eq. (3.24) of O(na2X) until 
Section 5 where it will be needed to calculate part of the first density 
correction of O(na2X) to #~B defined by Eq. (1.2). 

The remaining reduced density matrices defined by Eqs. (2.12) can be 
calculated as a power series in na27t by a similar manner. Because the 
procedure is straightforward we quote only the results here. The one- 
scatterer reduced density operator, ~(i ,  R1), can be written [defining/~(i, 
R1)]: 

A 

g (~ ,R , )  = g(O) + h (x, R,) (3.25) 
In our calculation of #~ we will need the matrix elements of h(i ,  Rl) only to 
lowest order in na2X. From Eqs. (2.12b), (3.1), (3.7a), and (3.16) we obtain 

(pl/79t, R01p,) = exp[ - ( i R l l h ) . ( p  - p,) ]h(p, pl) (3.26a) 

where [E(p)  = p2/2m] 
h 3 aX 2 

h(p'Pi) - (2~h) 3 f i [E(pi )  - E(p ) ]  (exp[ - f iE(pi) ] - exp[ - f iE(p) ] }  

(3.26b) 

with the corrections to Eq. (3.26b) being of relative order na2X. We also 
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need the two-scatterer reduced density operator, ~01, RIR2), which can be 
A A 

written [defining h(x, RIR2)]: 
A ~, A A A A 

g(x, RI,R2) = ~(~) +/~ (x, R~) + h (2, R2) + h (x, R~,R2) (3.27) 

with the matrix elements of /~(~,RI,R2) being at least of O(a2). In our 
calculations of /~ to O(na2X) we will not need the explicit form of /~02, 
R1, R2). 

Examining Eqs. (2.10) and (2.11) we see that the quantities involving 
the reduced density operators that appear in the calculation of ~ are the 
commutator of these operators with 8, the operator for the z component of 
the moving particles position. Using (p[2lpl) = ( h / i ) [ ( O / ~ p l z ) ~ ( p  1 - -  p)] we 
obtain 

(p[ [8, g(l~)] [P,) = - 3(p - p~) h Og(p) (3.28) 
i 0p, 

i[3g(P)? -' (3.29) 

(Pl[Z, g (x ,R, ) ] lp , ) - -  - 7 ~ + 

X e x p [ - ~  iRI - ( p - p O  1 (3.30) 

In the next two sections of this paper these results as well as those in 
Section 2 will be used to derive Eq. (1.2). 

4. THE ELECTRON MOBILITY IN THE LOW-DENSITY 
APPROXIMATION 

In this section we use the results of Sections 2 and 3 to compute ~ in 
the low-density or Boltzmann approximation. We first use the general 
expression for the electron mobility given by Eqs. (2.10) and (3.28) as 

e l i m f  J ~ 'p , r  Og(p) (4.1) 
/~ = m(2~rh) 3 ,-+Od 3pz 

since ~(1), e) and [8, ~ ) ]  are diagonal in the momentum representation. 
The low-density result for ~t can be obtained from Eqs. (3.24), (4.1), 

A A 

and (2.13b) by keeping only the term of O(n), ~l(x, Rl,~), in Eq. (3.13b). 
Denoting this lowest-order approximation to O(!~, e) by O0(1~, c) we obtain 
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from Eqs. (2.13b) and (2.14a) the operator kinetic equation 

{ e -  nfdRl~ol(O)[L ~(0)] -1[~ ,  ~(R,R1) ] 

A A --I  A } A A A 
X ~ , (x ,  R,, c)~ o (p) {o(P, e) = _pz (4.2) 

From Eqs. (3.25) it follows that [8, * ^ -1 . . . .  g(p)] [z, g(li)] [z, g(x, R1) ] = 1 + [z, " * - l  
/~(~, Rl) ]. In the last part of this section we will show that the contribution 
proportional to/~(R, Rl) in the above expression gives a vanishing contribu- 
tion to 0(1~, e) as e--> 0, and we consider first the term that does not depend 
on/;(~, R0. 

It will be useful here and in the next section to define a nonequilibrium 
binary collision operator (7) (actually a superoperator), T(i,  R1, e) in analogy 
with Eqs. (3.5a) and (3.7a), 

T(:~, R,, e) = ~o l(0)6~I(X, RI, i~)~o 1(~) 

�9 ,, 1 [e - iP- ( l~)  ] ( 4 . 3 )  = t~(x ,R, )  [c - i~(:~,RI) ] 

with 

C~(X,Rl) = _ [ [ , ) (~ -g l ) ,  ]----~ [ ~,r(X,Rl), ] (4.4) 

Using all this, Eq. (4.2) can be written 

c - -  n d R  1 T ( x , R I , r  & b o ( p , r  = Pz  ( 4 . 5 )  

A kinetic equation can be derived from Eq. (4.5) by taking matrix 
elements with respect to free particle states. This leads to 

n (2~rh) 3 faR, @1[ T(~, R,,,)40(O, e)lip) eOo(p, e) s 

= e~0( p, e) - nA(p, e)O0( p, e) = Pz (4.6) 

where the second equality defines the collision operator nA(p, ~). From Eq. 
(4.6) one can derive (as e--> 0) a quantum mechanical Boltzmann equation 
where all powers of the scattering length, a, appear through the quantum 
mechanical cross section ~[(Pl f(i, RI, E(p))[pl)[ 2, where E(p) = p2/2m.(9) 
However, since the experimental region of interest is a/X<< 1 we will 
compute only the leading contribution in the scattering length expansion. 

In Appendix B [cf. Eq. (B.3)] we show that the leading contribution to 
the matrix element in Eq. (4.6) is of O(a 2) and that the s-wave [,-~O(a2)] 
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quantum mechanical Boltzmann equation is 

C(~o(p,~)-n(2~rh)3( a ):f,tp, 
4~2h2m 

X I (I)(pl'e) -- ~(p, e)] = p~ 

2e 
(e 2 + ( l /h2) [ E(p) - E(pl)]2} 

(4.7) 

This integral equation for qb(p, e) can be solved by noting that the collision 
operator is an isotropic operator. A solution can then be obtained by 
setting qs0( p, c) = Pfl'o(P). As e ~ 0 we obtain 

m Pz (4.8) 
qb0(P'e) - 4~rna 2 P 

From Eqs. (4.1), (4.8) and Eq. (3.24), and neglecting the term of 
O(na2X) in Eq. (3.24), we can easily obtain the low-density value for/z,/~B. 
The result is 

e m J fdp pz Og~ 
/z B = m(2~.h)3 4~rna 2 P ~Pz 

= fie (4.9) 
3(2~rflrn) l /2 mra2 

which is the first term in Eq. (1.2). We remark that this result is equal to 
one-fourth the purely classical low-density mobility (1~ since the s-wave 
hard sphere cross section is four times the classical hard-sphere cross 
section. 

A ^ 

Next we verify that the term in Eq. (4.2) proportional to h(x, R1) gives 
a vanishing contribution to q~0(P, e) as e ~ 0 .  In terms of T(~,RI, e ) the 
collision operator for this contribution is 

n(2qrh) 3 
a of dR' (Pl[~'g(l~)]-l[ e'/~(~'R01 

A A x R1, Ip) (4.10) 

where the factor e ori, ginates from the term 9 o l(p) to the left in Eq. (4.2). 
From the facts that h(:~,R1) is not diagonal in the momentum representa- 
tion [cf. Eq. (3.26)] and that the matrix elements of T(~, R1, e) are well 
behaved as e ~ 0  (cf. Appendix B) it follows that Eq. (4.10) vanishes as 
c--> 0. 

In the next section we will compute corrections to Eq. (4.9) of relative 
order naZX. Since we have already neglected terms of O(a/X) the inequality 
na2X > apt  or naX2> 1 must be satisfied for this to be a reasonable 
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procedure. As already mentioned this inequality is satisfied in typical 
experiments (see note 5 above). 

5. THE F IRST D E N S I T Y  C O R R E C T I O N  TO/~B 

In this section we will use the formalism developed in the previous 
sections to determine the first density correction to the Boltzmann result for 
the zero-field mobility. We will obtain the expression for (/z//~s) given 
earlier by Eq. (1.2), where terms of order unity and of order (na2~) have 
been taken into account. We will consider higher-order terms in the 
following paper. 

A A 

We begin by considering the kinetic equation for q~(p,e), Eq. (2.13b), 
and by using the fact that the first two terms in a density expansion of 

A A A A 

q~(p, e) are obtained by retaining only 03 1, and 03 2 on the fight-hand side of 
Eq. (2.13b). If we denote the corresponding approximation to q5(13,c ) by 
~'l(P, e), it follows that ~'~(!~, e) satisfies the equation 

[ f A .2f  f . e - n  dRl~l(X,Rl,  e ) - - -  ~- dR 1 dR2032(R,R1, R2,e qb{( ̂ e ) = "  P, _& 

(5.1) 

where 4 1 and 4 2 are given by Eqs. (2.14a) and (2.14b), respectively. 
The plan of this section is to solve Eq. (5.1) and to obtain/~,to O(na2~) 

by the following method: (1) We first determine the action of %2(~1, R1R 2, 
A 

e) appearing in Eq. (2.14b) for 032 by making a nonequilibrium binary 
collision expansion of it in terms of the T operator defined by Eq. (4.3). 
This (BCE) is formally analogous to that given in Section 3 for the two 
scatterer equilibrium cluster operator ~2(~, Ri,R2,s ). (2) We then order Eq. 
(5.1) in powers of the scattering length noting that terms of O(n2a4r on 
the left-hand side of Eq. (5.1) are needed in the iterated solution of Eq. (5.1) 
around ~0 (cf. Section 4) to obtain corrections to/~B of relative order na2~. 
(3) We then iterate the resulting equation around the solution ~o(01,e) 
obtained in Section 4. (4) Three types of correction to/~B of order na2~ are 
then identified and computed: (a) Corrections due to the replacement of 
go(P) in Eq. (4.9) by the correct value to O(na2~), go(P) + gl(P), where 
gl(P) is the contribution to the equilibrium single-particle distribution 
function from the equilibrium ring events defined in Section 3. (b) Contri- 
butions to ~ of order na2~ due to dynamical events involving two scatterers 
and the moving particle described by those terms in the operator 42, that 
are independent of the equilibrium correlations ]~, and (c) corrections which 
we will refer to as "static corrections" coming from the terms in 4 2 that are 
proportional to the equilibrium correlation/~(~, Rl). 

A 

We begin with the binary collision expansion of ~2(~,R1,R2,e), in 
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terms of T operators, given by 

~2(I1,RI,R2, r = (i + PI2)~o(P)T(~I,RI,C)~o(P)T(y~, R2,r ) 

+ (1 + V,2)~0(l~)T(i, Ri,e)~0(I~)T(i, R 2 , c)~0(l~ ) 

X r ( i ,  R,, r 

+ (1 + e~)~o(~)T(~, R~,,)~0(p)T(,L R~,,)~0(p) 

• T(i,Rl,r ) + o ( r  5) (5.2) 

where P~j is a permutation operator that interchanges the scatterer labels i 
andj.  We note that the term of O(T 5) in Eq. (5.2) can be neglected since 
each T operator is at least of O(a) and we need to keep only terms of O(a 4) 
on the left-hand side of Eq. (5.1) to obtain the corrections to/~B of O(na2X). 

To obtain a kinetic equation for dP'l(p, r we insert the binary collision 
A A 

expansion of ~2, Eq. (5.2), into the expression for ~2, Eq. (2.14b). In 
addition we use the cluster expansion of the ~'s given by Eqs. (3.25), (3,27), 
and the analysis of the operator 6~ 1 in Eqs. (4.3) and (4.6). Finally we take 
free particle matrix elements of the resulting form of Eq. (5.1) and we 
obtain 

[r - nA(p, r162 ) - /a(p , r  O~) - I~t(p,r ~ )  =p ,  (5.3) 

where the action of the quantum Lorentz-Boltzmann collision operator on 
qb' l is given by [cf. Eq. (4.7)], 

2mhe nA(p'e)~'l(P'e)-2naZ~rm fdp, [ (2mhc)2+ (p2_p2)2 ] 

The contribution to this equation 
scatterers of the moving particle is 

from dynamic 

[gP'I(P~, c) - O~(p, c)] 

(5.4) 

events involving two 

n2(2'*h)3 f dR, f dR2 
x (pl{ r(,~, R,,~)~o(p) r(,~, R2, ~)~o(0) r(,~, R1, ~) 

• [1 + ~o(l~)T(~,R2,c)]~'~(lLe)}lp) (5.5) 

while the static contribution is given by 

f f aR2 I ~ t ( p , ~ ;  0 ' , )  = g 

X (p ] (  T ( ~ , R I ,  e)[-# , ,~(!~)] - i t  '' r  L~,n ~x,a2)] 
A ! A X ~3o(P)T(:~,R 2,~)r p) (5.6) 
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~, l 2 ~ l 2 

I 

Ca) (b) 

Fig. 2. (a) The nonequilibrium two-scatterer ring diagram. (b) The nonequilibrium two- 
scatterer rattling ring diagram. 

Where in writing Eq. (5.3) we have neglected all terms with an h(x, R ) to 
the extreme left since these contributions are proportional to e (cf. Section 
4) and vanish as E-+ 0, giving no contribution to the electron mobility. 

It should be remarked that /d(p,c;~{) is the sum of two types of 
dynamical operators acting on ~{ and they will be called the nonequilib- 
rium two-scatterer ring contribution, involving a product of three T opera- 
tors, and rattling ring contribution, involving four T operators, respectively, 
in analogy with the equilibrium interactions discussed in Section 3. Dia- 
grammatically these contributions are given in Figs. 2a and 2b, respectively, 
where a horizontal line connecting R and i (i = 1,2) represents a T(i ,  Ri, e) 
operator and the vertical line segments under R represent free particle 
propagation, ~0~). 

Further, the te rms/a  and/s t  are of O(a4dp{) as can be seen by noting 
that if a scatterer index i (i = 1, 2) appears in only one T operator and if 
there are no/~ operators with the same index then that T operator is at least 
of O(a 2) since we integrate overall R i (cf. Appendix B). Using this and Eq. 
(3.26b) it follows that I a and/s t  are at least of O(a4gp'l). 

To calculate /, to O(na2)t) we need only solve Eq. (5.3) iteratively 
keeping the zeroth and first iterate around the solution of [ e -  nA(p,e)] 
O0(p, c) = Pz. Writing 

qb](p,e) = qb0(p,e ) + ~bl(p,c ) + q~2(p,E) + . . .  (5.7a) 

and 

q~,(p, e) = ~ld(P,  r + (I)lst(P, e) (5 .7b)  

the equations to be solved are 

[ e - nA(p, e)] q)o( p, r = pz (5.8) 

[ e - hA(p, e)] q~,a(P, r = Ia(P, e; Do) (5.9) 

[ E -- nA(p, E) ] q51st(P, e) = I~t(P, e; qS0) (5.10) 

where we have used the fact that these operators are linear operators to 
define Old and q51~ t by Eqs. (5.9) and (5.10), respectively. 

In terms of q)o and q5 x the electron mobility is given by Eqs. (4.1) and 
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(3.24) to O(na2~k) as 

/~ =/@ +/t0st + #ld + #1st 

where/@ is the Boltzmann contribution given by 

e lira ( d p  Co(p, e ) _ _  
t~8 = m(27rh) 3 ~ o a  

0g0(e) 

(5.11) 

(5.12) 

POst is obtained from Eq. (5.12) by replacing go(P) by gl(P), the equilibrium 
ring correction to go(P), 

e lim ( d p  ~o(p, e ) 3gl(P) (5.13) 
m (2~-h) 3 e-~Od ~Pz ] ~ 0 s t  "~" 

/~ld is given by 

Ogo(p) (5.14) = e lim ( a p  q?,a(P, e) Bp z 
/zla m(2~rh) ~ ~ 0 a  

where we have used that to O(na2~) we can replace g(p) in this contribu- 
tion by go(P). Similarly/~lst is given by 

e 
/~lst = m(2~rh) 3 ~ i ~ f  ap~lst(p'e) Ogo(P)Opz (5.15) 

These contributions will now be computed in order. 
The Boltzmann contribution was calculated in Section 4 with the result 

given by Eq. (4.9)./Lo~ t can be computed from Eqs. (5.13) and the expansion 
of g(p) given by Eq. (3.24). If we use the identity Ogl(p)/Opz = (Op/Opz) 
Ogl(p)/3p), and the expression for ~0, and then integrate Eq. (4.8), by 
parts, we obtain 

e 2 foOOa? pg,(p) (5.16) ~0~t- (2~h)3 3na2 

We next insert the expression for gl(P) from Eq. (3.24) into Eq. (5.16) 
interchanging the s and p integrals to obtain the final result for/~ost, 

~ 0 s t  = - -  #s 2na2h (5.17) 

Next we consider /~ld" One can easily check that Ia(p,e; ~0) contains 
only isotropic operators, from which it follows that Id, like q~0, is propor- 
tional to pz. Using this, Eq. (5.9) can be solved by writing aPla(p,e ) 
= Pzq'qd(P)" Then, as e ~ 0, we obtain from Eqs. (5.4) and (5.9), 

m 
~ld(P, e) -- 4~rna2 p Id(p, ' ;  ~o) (5.18) 

If this expression is inserted into Eq. (5.14), and we use Eq. (3.24) for go(P), 
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we obtain 

]3e X3 m j :dpPZe-Bp2/2~l imla(p ,c ;d)o)  (5.19) 
~ l a -  m2 (2~rh) 3 4~na 2 p ,40 

To proceed with the evaluation of Eq. (5.19) we first note that 
Ia(P, ~; r (and hence/~la) can be written as the sum of two contributions: 

I~(p,,; %) = Iy(p,,; ~o) + I~(p,,; ~0) (5.20) 

Iff(p, ~; r will be called the "virtual collision" part of I a defined to be that 
part of I a proportional to ~o(P, c), i.e., those terms in which the momentum 
p of the zeroth-order solution ~0 has not been changed by the action of the 
various collision operators. I~(p,E; ~0) will be referred to as the "real 
collision" part of I a and contains those contributions where ~0 is evaluated 
at a different momentum, Pl. We first evaluate/z~a. 

In Appendix B we show that matrix elements of the binary collision 
operator T(~, R 1, ~) acting on an operator A can be expanded in powers of 
the scattering length a, and the first two terms are 

(Pl [[ T(~, RI,e)A (:~, RI) ] [p) 

: i ( a t :  ( I -i"' 4~r2h2 m dp2 exp ~ .  (Pl - P2) (P21A (x, R')lp) 

- e x p [ - i R l ~  -(p2-p)}(pl l3(~,R') lp2))  

( 1 7 :  [ i . ,  ] + a dp2 dp3 exp " (Pl - P2 + P) 4,rr 2h2m ~ P3 -- 

• (p~13(~, R')Ip3) 

~ + ( i / h ) [ e ( e )  e (e~) l  + -- ~ + ( i / h ) [  E(D3) -- E(?l )  ] 
a 2 1 / 2  / "  

• exp ~ ' ( P l - P 2 )  h (P2[A(:~'RI)IP) 

+ exp - -h  " (P2 - -  P) h (Pl[-~ (Xl,R')lP2) 

+ O(a 3) (5.22) 
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With the aid of this and Eq. (4.8), a straightforward but lengthy algebraic 
manipulation yields 

f ie  _~_)3/2 
/L~d= -- 3r ( mhRelim(~dpp2e-~e2/2mfo~dplp~,~oao 

[ (p~- 2mhi,)l/2- (p2_ 2mh&)l/2 

X l i -~i~ p2---] I--p2-- p--~l- ~ 2mhir 

1/2 2 1/2 + (p2_ 2mhie) + (p, + 2mhie) 
[p--~p---2+ 2--mhi--~]--5 I +g~a (5.23) 

where Re denotes the real part and g~a is given by 

fle (2rrfl) 3/2 Re lim(~dpp2e-,e2/2m 
g~ = ~ ~ (2~) 4 ,-~oJo 

+ oo 2 ~ 2 + idol+ 1 ldo 1 • f_~ dkk fo dplP'f-I 

X c -  ~--~ (Pl _p2) e m 2m 

[ ikp,o, ihk 2 i ) ] - '  
• ' m 2m 2mh (p~-p2 (5.24) 

By carrying out the integrals in Eq. (5.23) one can easily show 
/~a = g~d (5.25) 

Equation (5.24) can be evaluated by using the identity 

1 =i~r3(x)+~(1) (5.26) x -  ir 
where ~ denotes principal value. Using Eq. (5.26), scaling Pl with p 
(pl = xp), and carrying out thep integral we obtain 

na2h r~  2 r + l  r +  

0 1 1  - x (1 - 12 oo, + 1 - 

x 2 - 1  4 a ( o - x o l ) + x  2 -  1 

--2@(X2--~-l) lO]@ 4 a ( a _ X O l ) + X 2 _  1 
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where 
O(x)=l if x > 0  

= 0 otherwise (5.28) 

and Io[ denotes the absolute value of o. The remaining integrals in Eq. 
(5.27) are all elementary and can be explicitly evaluated with the result 

iz~d = - tzBna2)t ~ (5.29) 

The evaluation of/~[d is rather lengthy. We summarize the calculation in 
Appendix C, and merely quote the final result here: 

i~a = - Ixsna2)t @ (5.30) 

Combining the results given by Eqs. (5.21), (5.29), and (5.30) we obtain 

~ld = -- I~S na2)t~2 (5.31) 

We next determine/~lst. To do this we solve Eq. (5.10) and then use Eq. 
(5.15). 

From Eqs. (5.22), (3.26a), and (5.6) we find that/st(P, e; q)o) is given to 
O(a4~o) by 

a 3 2e 
Ist(P'e; qb~ = -n2(2~h)6i( 4~r2h2m ) faolfan'2,2+ ( [ E ( e )  - ~ ( e 2 ) ] / h )  ~ 

eo(p  , , )  - • 
e - (i/h)[E(pl) - E(/72) ] 

+n2(2crh)6i( a4~2h2m ) 2a (~)]/2fOg~ 

0 ]h(p,p])}  ~~ - cb~ xfap { . - e- ( i /h)[E(p , ) -E(_p)]  

(5.32) 

In evaluating Eq. (5.32) and solving Eq. (5.10) ill-defined angular integrals 
like f d~/p~ are encountered. We interpret these integrals as principal value 
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integrals yielding f dO/pz = 0 with the remark that other reasonable inter- 
pretations 8 do not change the value obtained for the electron mobility. 
With this, the first term in Eq. (5.32) is found to vanish and with the second 
term on the right-hand side of Eq. (5.10) ~bl~t( p, e) can be determined. Using 
the fact that nA(p, e) is an isotropic integral operator we obtain a value for 
/zl~ t, from Eq. (5.15), given by 

• l i m f d p  (dp  I 1 
r J e - ( i / h ) [ E ( p l )  - e ( p ) ]  

[ Pz ~ h ( p ,  pl ) Plz ~ h(p, pi)] (5.33) 
• 7 ?, 0p z 

with h(p, p0 given by Eq. (3.26b). The integrals in Eq. (5.33) can be 
evaluated without difficulty with the result 

/X]s t = ttB2na2X (5.34) 

From Eqs. (5.11), (4.9), (5.17), (5.31), and (5.34) we obtain/t  to O (na2X): 

=  B[I -  2na2x] (5 .35)  

which is the result quoted in the Introduction. 
There may still be additional contributions to ~//z B of order na2k 

which we have not included in Eq. (5.35). Such additional terms would 
come from terms in the binary collision expansion, Eq. (5.2), involving 
products of three or more T operators that would formally be of order a 5 or 
higher, while we have only taken into account terms of order a 4. The terms 
of order a 5, etc., would not contribute to the coefficient of na2~. in/L//~ B if 
the coefficient of these terms were momentum integrals convergent at their 
upper limit. However, it is possible that the momentum integrals diverge if 
the upper limit is set equal to infinity, and the physical upper limit of 
Pm,x = l i / a  for s-wave scattering would need to be invoked to obtain finite 
results. From this we see that using the finite upper limits on the momen- 
tum integrals could produce additional factors of a - l ,  etc. which taken 
with the powers of a from the T operators ultimately lead to corrections to 
/~//~B of order na2k. However, the contributions of these additional terms 
appear to be very small, typically on the order of a few percent of the total 

8 For example, ifp~ is replaced bypz + i0 + then there is a delta function contribution ~ 6 ( p z )  
that does not contribute to/~ due to symmetry. 
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Fig. 3. The electron mobility times the density, n/z, as a function of density for T = 4.2~ 
The solid line here represents Eq. (1.2) and the dots represent the experimental data of 
Schwarz.(4) 

contribution, and we will neglect them here. The relative smallness of these 
contributions follows from the fact that at large p the integrands of the 
momentum integrals are rapidly oscillating due to the appearance of 
spherical Bessel functions in the T operators, for large momenta (cf. 
Appendices A and B), leading to a small coefficient for these terms. 

In Fig. 3 we have plotted Eq. (5.35) as well as the experimental results 
of Schwarz (4) for  the electron mobility of helium at low temperatures. A 
discussion of this figure will be given in Section 6. 

6. D I S C U S S I O N  

In this section we compare our results to those of previous workers and 
then conclude this paper by making some general remarks about the 
calculations presented here. 

(1) In this paper we computed the first two terms in the density 
expansion of the electron mobility. Previous workers who have attempt- 
ed similar calculations using binary collision expansion methods are Neus- 
tadter and Coopersmith, (11) and Braglia and Dallacasa, (12) and their calcu- 
lations will be discussed in order. 

The calculation that is closest in spirit to ours, and that leads to a 
number of interesting results, is that of Neustadter and Coopersmith. These 
authors attempt to compute the zero-field mobility of an electron in helium, 
which is modeled as a system of randomly placed stationary, hard-sphere 
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scatterers. They develop cumulant expansions for the canonical partition 
function for the electron in this system, and for zero-field mobility, and 
they make a scattering length expansion of the various cluster operators 
that appear in the cumulant expansion. By summing a large class of terms 
in these expansions, Coopersmith and Neustadter obtain an expression for 
the mobility that shows a pronounced decrease of several orders of magni- 
tude over a small density range, and thus they seem to have provided a 
kinetic description for the "localization" of the electron in helium. Their 
results are also remarkably similar to a phenomenological description of 
localization due to Eggarter and Cohen. (13) Unfortunately, Coopersmith 
and Neustadter's results are not correct as they stand, nor are their results 
supported by the calculations carried out here. The central difficulty of 
their approach resides in the fact that they do not sum all the classes of 
terms in their cumulant expansion that must be taken into account for 
consistency. In fact the one class of terms they inconsistently neglected, 
when treated on the same footing with the others, precisely cancels the term 
that provided the effect of localization. To illustrate the cancellation, which 
occurs in both the partition function and the mobility, we outline Coo- 
persmith's (11) calculation of the canonical partition function in Appendix 
D, and show that the ring diagrams discussed here in Section 3 cancel the 
important terms needed by the author for the description of localization. 
Therefore, in view of this cancellation, one must regard the kinetic descrip- 
tion of the electron localization in helium as still an open problem which 
will require a more extensive analysis of the dynamical effects than has 
been given so far. 

On a more modest scale, Braglia and Dallacasa O2) have carried out an 
evaluation of /L similar to that given here, where they look only for the 
first-order correction to the Boltzmann value. However, they took into 
account only the term that we have denoted by/~0st in Section 5 of this 
paper.,That is, they neglected both the dynamical and static correlations 
from ~ 3 which must be consistently retained. Further, theft calculation of 
/~0st was also inconsistent since they used what corresponds to our Eq. (3.10) 
with t to O(a 2) without at the same time performing the equilibrium ring 
diagram resummation. As shown in Section 3 all of these terms must be 
treated together. 

(2) The most important difference between quantum mechanical 
kinetic theory and classical kinetic theory appears to be that the nonequilib- 
rium binary collision operator in quantum mechanics has a contribution 
proportional to the scattering length a. Because of this, at low temperatures 
where a scattering length expansion can be used this purely quantum 
mechanical part of the T operator is the dominant part. In fact, it is 
responsible for the term of O(na2~) in/~. 
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(3) In Section 5 we solved Eq. (5.3) iteratively and showed that the 
total contribution to the term of O(na2~) in Eq. (1.2) is due to the 
dynamical collision sequences illustrated in Fig. 2, i.e., all effects due to 
static or equilibrium correlations are canceled. Here we note that if/st(P, c; 
qb'l) is neglected in Eq. (5.3) from the beginning then the resulting integral 
equation can be solved exactly. To show this one needs 

nA(p, O)~(p)p z = ~(p)pnA(p, 0)p z (6.1) 

Ia( p, 0; q~(P)Pz) = ~(p)pld(p, 0; fiz) (6.2) 

where ~(p) is an arbitrary function of [p[ and/~z = PJ[P[. Equation (6.1) 
follows directly from Eq. (5.4) and Eq.(6.2) can be verified by using Eqs. 
(5.5) and (5.22). Further, we believe that properties similar to Eqs. (6.1) and 
(6.2) are valid to all orders in the density and in the scattering length since 
an isotropic kinetic equation should (as e--> 0) transform an incoming state 
with momentum p into an asymptotic outgoing state with momentum p' 
with the restriction [p[ = [p'[. We note that collision operators which contain 
static correlations, e.g., /st(P,~; ~'1), are not isotropic operators due to the 
commutators [~, ] that they contain, cf. Eq. (5.6). Consequently, they do 
not satisfy a property similar to Eq. (6.2) and do not conserve [p[. 

Using Eqs, (6.1), (6.2), (5.4), (5.5), and (5.22) in Eq. (5.3), neglecting 
Ist(P, e; alP'l) , we obtain 

gg~(p,0) - m Pz (6.3) 
4r 2 [ P + 4r ] 

Inserting Eq. (6.3) into Eq. (4.1), consistently replacing g(p) by go(P), and 
expanding [p+4rr2na2h] -1 in ~](p, 0) about p-1 yields Eq. (1.2) plus 
corrections of O [(na2~)2]. 

(4) In Fig. 3 we compare our results for/~ with the experimental data 
of Schwarz, (4) and find reasonable agreement between theory and experi- 
ment for densities not too high. We note that a horizontal line in this figure 
would represent a mobility,/~B, given by the Lorentz-Boltzmann equation. 

A P P E N D I X  A. D E R I V A T I O N  OF THE t - M A T R I X  

In this appendix we calculate tl(p, Pl, s; RI) defined by Eq. (3.5) for the 
hard-sphere interactions given by Eqs. (2.4) and (2.5). Since similar calcula- 
tions have been given elsewhere (14) we will only sketch the calculation here. 
Further, since in Appendix B we will need q(P, Pl,-h~0; R1) we calculate 
here tl(p, pj, - ( z  _ i0); R1)~ t~-+)(p, pl, - z ;  R1) in the complex z-plane cut 
along the positive real axis. 
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To determine t}-+)(p, p l , - z ; R 1 )  w e  first define a ket vector, I+) (-+~, 
that satisfies the Schr6dinger equation 

^ A [z _+ i 0 -  Hu(x,R,)]I~p> (+-) = ]P,> (A.1) 

Using Eq. (3.5), we can express the t matrix in terms of (p[ qJ>(---) by 

- P , )  1 

(P]~>(-+) = [z-L-_i0-E(p)]  + [z+iO-E(e)]  

,~ § 1 (A.2) • t - (x ,R1,-z)[pl  ) [z +_ i 0 -  E(pl) ] 

The plan of this appendix is to solve Eq. (A.1) in the coordinate representa- 
tion, i.e., solve the equation 

z___ i 0 +  ~--~m 7~ - V a ( r -  R1) ( r [ , )  (-*) = exp[ip~ .r/h] (1.3) 
(2~h) 3/2 

and then use 

(p [ ~k>(_+) _ 1 fdrexp[-ip, r / h ] ( r  t ~>(• (1.4) 
(2~rh) 3/2 

in Eq. (A.2) to determine (pit ~(-+) (~, R~, -  z)lpl ). 
Equation (A.3) is the Schr6dinger equation and for the hard-sphere 

interaction given by Eq. (2.5) its solution can be easily obtained in terms of 
partial waves. (5) The result is 9 

W([r - R1[ ) exp[ ipl. R1/h ] 
(r [ ~p>( +~ = [ z + i0 - E(p l )  ] (2~rh)3/2 

• (exp[ipl  . ( r -  R1)/h] - ~ (2 /+  1)i' 
l=0  

j,(p,a/h) h}+-) (~1 r _ R~I) ) (A.5) • e,(cos0') 

Here W(Ir - R~}) is a characteristic function that vanishes for [r - RI ~< a, 
and is unity otherwise, PI is the Legendre function, 0' is the angle between 

9 It should be remembered, that in solving Eq. (A.3) for hard-core potentials there is a 
problem. That is, for these potentials we must have (r  [ q~> = 0 for ]r - Rll < a which is not 
consistent with the right-hand side of Eq. (A.3). This difficulty can be overcome by 
incorporating W(Ir - RII ) functions into the definition of the t matrices as in the classical 
case for the T operators. O5) We do not do this here since the effect of the inconsistency in 
Eq. (A.3) leads to excluded volume corrections of O(na 3) which can be neglected here. 
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Pl and r - R 1 ,  jl is the spherical Bessel function, h/(-+) is the spherical 
Hankel function of the first ( + )  and second ( - )  kind, and ~ = [2m(z __ i0) 
/h2] 1/2. Using Eqs. (A.2), (A.4), and (A.5) we obtain 

(p[f(+-)(~,R 1, - z)]pl ) -- exp[ - iR l . (p - pl)/h]t(+-)(p, pl -- z) 
[ z  + i0  - s(p)] 

= - ( 2 ~ h ) 3  e x p [  - i R ,  . ( p  - p , ) / h ]  

X(flrl~<adrexp[-ir'(P-Pl)hl 

+ ~ (2l + " ' "  
jl(pla/h) 

x fd~ exp[- ip. r/h ] W(r)P,(cosO')h~, +-~ (~r) 1 
(A.6) 

Examining Eq. (A.6) we see that Eq. (3.9) has been verified. 
t(+)(p, p l , - z )  can be computed by carrying out the r integrals with 

the result 

a 2 j l(alp - p,l/h) 
t(• Pl, - z) = - [z + i0 - g ( p ) ]  2,n .2h 2 [P - -  Pl[ 

a 2 
+ - -  1)/'l(cos0) 4~r2hm ~__~o ( 2 / +  

X[~jt( pla' "[P" hl(+-+l)(~'a) P jt+,(~_)jt(_P_~)] --h-- ) J' [ -h- ) h~+-)(~a) h 

(A.7) 

where 0 is the angle between p and Pl. To O(a2)t(+-)(p, pa, -z) is given by 

t(_+)(p,p,, _ z) _ 4~r2hma {l-T- t'a[2m(z+iO)] 1/2 } - ~  _ + O ( a  3) (A.8) 

A P P E N D I X  B. D E R I V A T I O N  OF THE T - O P E R A T O R  

In this appendix we derive the representations of the nonequilibrium 
binary collision operator given by Eqs. (5.22) and (4.7). 

From Eqs. (4.3) and (4.4) the left-hand side of Eq. (5.22) can be 
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written 

<p~t[ r(,z, R. ~)A (,~, R') ]IP> 

(2~ri) 2 -,c c' 

1 tP> 
• ~(,~,w)[O0~(~,Rl)/h) _ o~,] 

B ( x , R  ) 
- (P,I [ ( /~a(~ ,Rt ) /h )  + ~] 

, . } ,, ~ V ( ~ , R l ) l p >  (g.l) x 
[ (Hd(x,R,)/h) - ~o'] 

where/~(~, R t) = [ ~ -  is t) and e(c') is a contour in the complex 
~0(oa') plane that passes above the real axis and is closed in the lower half 
plane. Equation (B.1) can be easily expressed in terms of the t matrix 
defined by Eq. (3.5) as 

A A l <P,I[ T(x,Rx, QA (x ,R) ] [p>  

= -ihfo~dte- ' t fdco~d~'e -i('~176 

/ ' A  ^ ^  l (pl[t (x, R l, hw)lp2)<pzln (x, R )IP) f • )apex [E(p~) + h~][ E ( p ) -  h~'] 

A A l A A 

<p,lB (x, R )lp,~>(p2l t (x, R,, - h~')lp> 

[E(p,) + h,o][s(p~) - h~'] 
R )lP3><P3lt (x,R, ,  -h~ ')[p> j :dp3 (Pl[t~(~'R"h~)IP2><p21B(x' ' 

[ e(?~) + ho,] [ e(?~) - h,o,] 

e(?)~ h~' e(?,) + h~ x 

(B.2) 

Using Eqs. (A.6) and (A.8) in Eq. (B.2) and carrying out the ~, oa' and t 
integrals Eq. (5.22) can be obtained without difficulty. 
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We note that in deriving the quantum mechanical Boltzmann equa- 
tion, discussed in Section 4, Eq. (B.2) appears with Pl = P  and with 

= A(I)) diagonal in the momentum representation. For this case <p21/~(~, 
Rl)lp) = ~A (p)6(p - P2) and Eq. (B.2) can be written 

<PI[ T(~t, R,, E)A (0) ] IP> 

: -ihc~dte-'t~d~ofdoo'e-i('~+'~')t(dpl 
0 c dc '  d 

t (p, p,, h~o) t (p,, p, - h~o') 1 

>< [A (p') - A (p)] (B.3) 

where Eq. (A.6) has been used as well as the generalized optical theorem: 

<PI[ t.(x, R,,  ho~) - t(x, RI, - h~') ]lP) 
A A A A 

<Pit (X'Rl'h~~ (x'l{l'--h~0')lP> (B.4) 
- -h-~--;-]]] 

Equation (B.4) can be easily derived from the definition of t given by Eq. 
(3.5a). From Eqs. (A.8), (B.3) and Eq. (4.6), Eq. (4.7) can be obtained 

APPENDIX C. DERIVATION OF EQ. (5.30) 

In this appendix we sketch the derivation of Eq. (5.30) for/~d- From 
Eqs. (5.22) and (4.8) straightforward but lengthy algebraic manipulation 
yields 

~(d= - -  6m - - -5  (2,n-) 4 ~-->0d0 

X fo~176 ffl2dkd2f~ldoof~ldo, o~ 

2m [ E -  ( p ~ _ p 2 ) ]  c m 

[ ihk2 ikplOl i (p~_p2)l-1 
X ~ 2m m 2mh 

[ i 1-1[ i ikpo ihk2] -t 
+ � 9  e - ~ ( p 2 - p ~ )  m 2m 
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withp (Pl = xp), and carrying out thep integral we obtain 

na2)t s ,.+l T- dooJ_ 1 d~176  

101 

X 3qr2~(X 2 - -  1 ) ~ ( a  - -  O'1) -'1- 2@ 

j O[1-  x2(1 - 02)] 
1 + 

•  [~ 4 o ( o - x o , ) + x 2 - 1  [ l - x 2 ( 1  - o  2 )J'/2 

1 ) o 2 [  l ]} (C.3) •176176 1 4o(o_xo , )+x2_l  

The remaining integrals in Eq. (C.3) are elementary and can be straightfor- 
wardly evaluated. The last two terms are found to precisely cancel and the 
first term gives Eq. (5.30). We believe the above cancellation is a general 
feature (cf. Section 6.3) of the calculations and is related to Brg's theorem 
used in quantum mechanical scattering theory (see, for example, Ref. 16). 

APPENDIX D 

In this appendix we outline the calculation of the canonical partition 
function for an electron in a random system of fixed, hard-sphere 
scatterers, as given by Coopersmith. (11) We then show that the incorpora- 
tion of the additional terms that must be retained for consistency leads to a 
cancellation of the terms needed by Coopersmith for his description of 
electron localization. 

We begin by writing the canonical partition function, Z, as 

Z = 
" dpe flp2/2m 

lim Trf dRN (D.1) 
N--> r162 

N/~2 = n 

can be expressed in terms of equilibrium cluster operators where Zp 
^/*, ~ l  utx, ~ ,  /3), Eq. (3.2), by 

= n l l * ~- l 
Z e 1 -t.- Cp -1  ~ 7~. f d R  ( p l u ( x , R , / 3 ) [ p )  ( 9 . 2 )  

/=1  

where Cp = ae-&V2m(2~rh) -3. We next carry out a cumulant expansion of 
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Zp by writing 

 .-expl 1 ,=, (O3, 
By expanding the right-hand side of Eq. (D.3) in powers of n, and then 
comparing the result with Eq. (D.2) we find that the terms in the cumulant 
expansion Bt(p), are given for l = 1,2 . . . .  by 

= Cp-lfdRl(PlUl(i ,R1,  B)Ip) = BI(p) ul(p) 

with 

with 

Bz(p) = u2(p) - uE(p)/2 

(D.3a) 

(D.3b) 

Ce-' f dRl f dR2(pI~2(~,R1,R2 B)IP> (D.3c) u2(p) = ~ 

B3(p) = u3(p)-  ul(p)[u2(p)-  u~(p)/2] - ula(p)/3! (D.3d) 

_ c ; '  f a R , f e k @ R , < # , ( e , , R , , R : , R a ,  ~)tP> u,(p)  = (D.3e) 

a 1 ffY+i~176 e & 
=-Cp-I 4~-2 hm 2~ri.,v_ioo [4+ E(p) ]  2 

• [1 + ~ (2mQ] l /2+  O(a2 ) 

= u t .  + u?~ + . . .  (D.4) 

when the superscript denotes the power of a, in the scattering length 
expansion of ul(p). 

ul(p) = - c#'fdRl 1 r '~+i~, e "  (pl/ ' ( i ,Rl,e)[p) L- ,~  a , [ ,  + E(p)]~ 

and so on. 
Now we make use of the binary collision expansion of the cluster 

operators ~t(i, W, r )  discussed in Section 3, to write the ul(p) in the form of 
expansions in powers of the scattering length a. 

For example, using Eqs. (3.7a) and (3.16) we find 
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Similarly the binary collision expansion of u2(p) has the form 

u2(P) = Cp-' f dR, f dR2 1 c~+,=,  e 3" " [ ,  + E(?)]2 

• { < p ] / ' ( s  + f i 2 / 2 m ] - ' ? ( ~ , R 2 , Q I p >  

A A 

- <pit ( x , R ] , ~ ) [ c  +fi2/2m]-];(ft,Rz,Q 

x[c + p 2 / 2 m ] - ' ; ( ~ , R ~ , Q l p >  + . . .  } 

= u2.2(p) + u2,3(p) + um4(p ) + . . .  (D.5) 

where the additional subscript U2,i(p) denotes the number of binary colli- 
sion operators in the particular term on the right-hand side of Eq. (D.5). 

^ 

Since each of the t operators in the U2,i(p) has an expansion in powers of 
the scattering length, one can expand the u2,i(p) in powers of a as 

U2,i(p) = u2(i~(p)+ u ( i + l )  2,i -1- " ' "  (D.6) 

where the superscript denotes the power of a, and we use the fact that each 
? operator has an a expansion beginning with the first power of a. Thus 

u2(p) = u2<,22)(p) + [ u2(,32)(p) + u(2,33)(p) ] + O(a 4) (n.7) 

One can carry out similar t ~ and a expansion for the higher-order functions 
ut(p). When  these expansions are carried out and inserted in Eq. (D.3) for 
the cumulant function Bl(p), one finds that 

Bl(p) = ul(p) = Ul,l(p) = u~l)(p) + u~,Z)(p) + O(a 3) (D.7a) 

B2(p)  = u(3)(p) + u(,3)(p) - u~l)(p) + u~,2)(p) "1- O ( a  4) ( D . 7 b )  

n3(p)  = /A3(,~)(p ) "t- ~/(4)t'n,3,41,11,) -- U~)I)(P) -~ u~2)(P) - u(Z)r"~u ~ 2 ) l ' a l , 1  ~.v.I 2,2~F) 

- ur162 + [ ur 12uCZ)r"' O(a 5) (D.7c) l,lkl J] 2,3~,1"1 l,l~,i'}J l,lkl ' /  q- 

and so on. 
Here we have made use of the explicit form of the ut(, j) operators to 

remove terms that cancel in the expression for the Bt(p). For use below, we 
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note that the explicit form of some of the u}/j) are given by 

4~r2h----- ~ -~-~ (2 m ) 1/2 

1 (~,+i~& eB'cl/2 
X ~ i . . T _ i o  0 is "Jr E(p)]3  

(O.Sa) 

u(3) _ lf~(2~rh)3( ~ ]3 , 2,3 = - C? 2~rZm(2m)/2 
47r hm I 

1 ] rv+i~de e ~' (D8.b) 

and 

u(34)3 = _cp-l(2~h)6a( a ]3 3_~ (2m)l/2 
\ 4~r2hm ] 

1 ['T+ioo. efleel/2 ]4 (D.8c) 
X ~ Jv-ioo a, [e + E(p) 

Explicit expressions for u}ll ) and u},2~ were previously given in Eq. (D.4). 
With these preliminary manipulations we can now outline the method 

of Coopersmith. The idea is that if one wants to develop an expression for 
Z, valid when na)t2>> 1, then a term-by-term evaluation of the terms in the 
cumulant expansion is not sufficient since it gives a representation for Z 
that is only useful for naX2 << 1. Instead one must resum the terms in the 
expansion to obtain results that can be used when n2t2a >> 1. Coopersmith 
has carried out a partial resummafion of the series developed here. That is, 

.--,o~ n t B . .  he considers the sum 2.l=1 AP), and for each of the Bt(p), he includes 
most, but not all of the terms of order a t+ 1 or less, in the scattering length. 
In particular, he neglects all the terms that contain u (l+1) such as u (3) l,l+ 1 ~ 2 , 3 ,  

u(4) appearing in Eq. (3.7), and its generalization to higher order in I. 
3 , 4 ,  �9 �9 �9 

When the terms in which uu+ 1(l+ 1>~), appear are neglected, and the sum over 
all orders in density is carried out, Coopersmith obtains the result Zc, given 
by 

Zc -- (2rrh)- 3 f dp e- BP2/2mexp( -- flnah22~r/m) 

{ 2(2rQ'/2na2h } 
• exp ml/2 ~ [ (Br  2 -  1)M(fll/2x) - fil/2ueB'2/2] (D.9) 

with 

( pZ )1/2 x = - -  + 4~rnah------~2 (D.10a) 
m m 
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and 

M(x) = ~ rjoX/f~ dy ey 2 (D. 10b) 

The analysis of localization made by Coopersmith is based in large 
part on the density dependence of this quantity, Z,.  However, the difficulty 
with his analysis is that when the terms involving u (l+1) t,t+l are taken into 
account, all the effects cancel. To see this, consider for example, B2(p), Eq. 
(C.7b). The terms included by Coopersmith are 

B2,c(P) =" u2(~2)(P)- u(l)['r"~U(2)/n'~l,l I.F) 1,1 ~.V/ 

= a( ah22~r )2 (2m) 1/2 1 
h e~PZ/2m 2~ri 

X~'+icCdcefle[ 2C1/2 f l~"  ] (D.11)  
Y - `~176 [E -[- 8 ( / 7 ) ] 3  [E "[- 8( / /9)]2 

However when the term u (3) is added to this one obtains 2,3 

B 2 ( p ) = - a  ah_~,r; h el~pZ/2m (7+'~176 
2vri Jr_ic~ ds [r E(p) ]  2 

+ O(a 4) = 0 + O ( a  4) (D.12) 

A similar cancellation occurs at every order in the density, and the final, 
consistent result is 

e - ~E0 Z -  ~3 [1 + O((naZ~)Z) ] (D.13) 

where E 0 = nahZ2~r/m. 
This is in agreement with the result obtained here by another method, 

cf. below Eq. (3.23), and it does not contain any features as yet useful for a 
description of localization. 
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